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Abstract—The relative motion between stator and rotor in
electrical machines requires a flexible representation in 2D and
3D Finite Element (FE) models. Numerous approaches to incor-
porate the relative motion are available for the FE method. Along
with increasing problem size and accuracy, parallel computing
becomes more feasible. The parallel simulation of sufficiently
large problems often involves domain decomposition algorithms,
especially if distributed memory systems are used for the paral-
lelization. Accounting for motion usually requires explicit domain
decomposition at each simulation step. This paper proposes
an alternative approach avoiding the computationally expensive
domain decomposition at each step by properly choosing an initial
decomposition, which can be applied to all steps throughout the
simulation.

I. INTRODUCTION

NUMERICAL simulation of electrical machines requires a
flexible implementation of the rotor motion in 2D and 3D

models. This is especially important for parallelized codes as
applied in this paper. Due to the development on the micropro-
cessor market, increase of computational power is not driven
by increase of processing frequency anymore but mainly by
parallelization [1]. Recent microprocessor architectures are
equipped with multiple cores on every processor and addi-
tionally with multiple processors per system. Furthermore it is
possible to use computing clusters as distributed memory sys-
tems for parallelization. Both multiple processor architectures
and distributed memory systems require explicit domain de-
composition. In this paper the parallelization is implemented in
the institute’s in-house FE-package iMOOSE [www.iem.rwth-
aachen.de] and a hybrid parallelization paradigm based on
OpenMP and MPI is deployed. An alternative parallelization
particularly designed for vector processors is presented in [2],
as well relying on domain decomposition. Several approaches
to simulate the motion of electric machines within the FE
analysis have been developed. Among them is the moving
band technique [3], where an annulus shaped band of elements
is re-generated after each rotor movement. Since this approach
is only feasible for motion problems in 2D, the lock-step
approach is often applied in 3D [4]. The lock-step algorithm
replaces the degrees of freedom (DoF) on e.g. the rotor side
by the DoFs of the stator side. Therefore, the discretization
on the sliding interface must match for each step requiring a
fixed motion step size. Lagrange-multiplier approaches seek to
overcome the disadvantages being applicable to 2D and 3D,
static and transient problems [5].

Almost all approaches accounting for motion have in
common, that DoFs on one side are expressed as a linear
combination of DoFs on the opposite side. The modified mesh
decomposition presented in this paper is compatible with all
motion algorithms within this category.

II. ADJUSTING PARALLELIZATION FOR MOTION

The parallelization implemented within the iMOOSE library
is based on domain decomposition of the FE mesh, so that

every involved process is exclusively working on a particular
sub mesh. The decomposition of the complete domain Ω into
s sub domains Ωi is given by:

s⋃
i=0

Ωi = Ω with Ωi ∩ Ωj = ∅ for i 6= j. (1)

The decomposition is done by a graph partitioning algorithm,
e.g. by multilevel methods [6]. Therefore the dual Graph
G = (V,E,Wv) corresponding to the mesh is constructed. V
describes the vertex set and E ⊆ V x V the edges. Wv holds
the vertex weights. Every vertex in the dual graph represents
an element of the mesh. Two vertices are adjacent if and only
if the corresponding elements share a common edge in 2D and
a common face in 3D. Additionally every vertex is weighted
according to the number of DoFs, which is considered by the
decomposition algorithm.

If motion is considered for computation, the mesh topology
changes every time step at the interface between stator and
rotor. The initial mesh decomposition is only valid for the
first time step and can not be used for the other ones without
modifications. One possible solution is to adjust the decompo-
sition at every step, which results in additional communication
by data traffic among all participating processes. To avoid
this overhead and minimize process interdependency the mesh
decomposition is modified to fit any position of the motion.

III. MODIFIED DOMAIN DECOMPOSITION

The presented modified domain decomposition for handling
the motion during the parallel execution is based on the idea,
that all elements corresponding to the moving interface are
assigned to the same sub mesh. To do so, a modification to
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Fig. 1. Mesh decomposition taking motion into account during the partition-
ing of the dual graph
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Fig. 2. Number of elements dependent on the mesh size

the standard domain decomposition is required restricting the
locality of the motion interface to one sub mesh and thus,
significantly reducing the communication.

Let Ωm and Ωs be the stator and rotor domain of an electric
machine and T m and T s their triangulations. Let Γm and Γs

be the interface between the stator and rotor domain and T Γm

and T Γs be the elements belonging to this interface. Initially, a
dual graph of the discretization is constructed. Fig. 1(a) shows
a zoomed detail of the discretized air gap of a 2D permanent
magnet excited synchronous machine (PMSM) FE-model and
the corresponding dual graph. In the next step all vertices
corresponding to elements from T Γm ∪ T Γs are merged to
one supervertex vm(Fig. 1(b)). Let V I contain the vertices
corresponding to these elements. The weight of vm has to be
set according to the sum of the weights of the merged vertices
in order to avoid an unbalanced partitioning. Thus, a modified
graph G′ = (V ′, E′, W ′

v) is constructed:

V ′ = V \V I ∪ {vm}, (2)

E′ = {{vj , vk} | {vj , vk} ∈ E ∧ vj /∈ V I ∧ vk /∈ V I} (3)

∪ {{vm, vj} | {vi, vj} ∈ E ∧ vi ∈ V I}, (4)
W ′

v = {wi ∈Wv | vi ∈ V ′} ∪ {wm}, (5)

wm =
∑

i,vi∈V I

wi. (6)

The graph G′ is partitioned by e.g [6]. The resulting cut for
the given example graph is shown in Fig. 1(c). Afterwards all
vertices in V I , which have been merged into the supervertex
vm, are expanded by assigning the vertices to the same par-
tition in which the supervertex is located (Fig. 1(d)). Finally,
the different sub meshes are determined from the partitioning.
Thereby all elements which are located at the moving interface
Γm and Γs are assigned to one single sub mesh.

Only one process has to handle the motion between stator
and rotor, thus no additional communication is required for
handling the motion. The maximum reasonable number of sub
meshes is given by:

nlimit ≤
|T m ∪ T s|
|T Γm ∪ T Γs|

. (7)

The limit nlimit is reached when a single sub mesh contains
all elements of the set T Γm ∪ T Γs. Exceeding this limit
of sub meshes leads to unbalanced decompositions being
unfavorable and limiting the efficiency of the parallelization.
This limit increases with increasing problem size. Fig. 2 shows
the number of elements of a complete mesh |T m ∪ T s|
compared to the sliding interface |T Γm ∪ T Γs| in function
of different element sizes for a 2D field problem. It can be

Fig. 3. Decomposition of a 2D PMSM FE mesh into four sub meshes

observed, that the slope of the relative overall number of
elements is quadratically with respect to the relative element
size, while the slope of the number of elements on the sliding
interface increases almost linearly, since this interface is a one
dimensional sub mesh. Thus, the theoretical limit nlimit is
unlikely to be reached when simulating electrical machines
using the current approach.

IV. APPLICATION

The described method has been applied to a 2D quasi-static
field problem of a PMSM. Fig. 3 shows the result of the mesh
decomposition into four different sub meshes for the parallel
computation with four processes. The black colored sub mesh
contains all the elements of the set T Γm ∪ T Γs as a subset.
For this mesh, which contains 17670 DoFs, the maximum
reasonable number of sub meshes computed by (7) yields 21.

V. CONCLUSION

This paper proposes a modification to the standard domain
decomposition in parallel computing of electrical machines.
By introducing a weighted, virtual supervertex in the dual
graph of the elements on the sliding air gap interface,
single domain decomposition yields proper sub meshes for
all subsequent simulation steps. Hereby, an efficient parallel
computation of electrical machines accounting for motion on
distributed memory system as well as on multi processor
architectures can be implemented.

The full paper will contain an application of the proposed
approach to a 3D field problem and measurements of the
speedup ratio, which is achieved by this approach.
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